On Markov Chain Approximations to Semilinear Partial Differential Equations Driven by Poisson Measure Noise
نویسندگان
چکیده
We consider the stochastic model of water pollution, which mathematically can be written with a stochastic partial differential equation driven by Poisson measure noise. We use a stochastic particle Markov chain method to produce an implementable approximate solution. Our main result is the annealed law of large numbers establishing convergence in probability of our Markov chains to the solution of the stochastic reaction-diffusion equation while considering the Poisson source as a random medium for the Markov chains.
منابع مشابه
Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملWong-zakai Approximations with Convergence Rate for Stochastic Partial Differential Equations
The goal of this paper is to prove a convergence rate for WongZakai approximations of semilinear stochastic partial di erential equations driven by a nite dimensional Brownian motion.
متن کاملStructural properties of semilinear SPDEs driven by cylindrical stable processes
Abstract: We consider a class of semilinear stochastic evolution equations driven by an additive cylindrical stable noise. We investigate structural properties of the solutions like Markov, irreducibility, stochastic continuity, Feller and strong Feller properties, and study integrability of trajectories. The obtained results can be applied to semilinear stochastic heat equations with Dirichlet...
متن کاملStochastic Differential Equations with Jumps
Gradient estimates and a Harnack inequality are established for the semigroup associated to stochastic differential equations driven by Poisson processes. As applications, estimates of the transition probability density, the compactness and ultraboundedness of the semigroup are studied in terms of the corresponding invariant measure.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003